refactor(net): 重构网络结构并移除未使用的代码
- 移除了未使用的导入语句和冗余代码 - 重构了某些类和方法,提高了代码可读性 - 删除了未使用的变量和注释掉的代码块 - 简化了部分代码结构,提高了运行效率
This commit is contained in:
parent
c023c0801d
commit
344de69cb2
313
net.py
313
net.py
@ -6,10 +6,7 @@ import torch.utils.checkpoint as checkpoint
|
||||
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
||||
from einops import rearrange
|
||||
|
||||
from componets.WTConvCV2 import WTConv2d
|
||||
|
||||
|
||||
# 以一定概率随机丢弃输入张量中的路径,用于正则化模型
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
@ -35,9 +32,6 @@ class DropPath(nn.Module):
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
|
||||
# 改点,使用Pooling替换AttentionBase
|
||||
class Pooling(nn.Module):
|
||||
def __init__(self, kernel_size=3):
|
||||
super().__init__()
|
||||
@ -50,8 +44,8 @@ class Pooling(nn.Module):
|
||||
|
||||
class PoolMlp(nn.Module):
|
||||
"""
|
||||
实现基于1x1卷积的MLP模块。
|
||||
输入:形状为[B, C, H, W]的张量。
|
||||
Implementation of MLP with 1*1 convolutions.
|
||||
Input: tensor with shape [B, C, H, W]
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -61,17 +55,6 @@ class PoolMlp(nn.Module):
|
||||
act_layer=nn.GELU,
|
||||
bias=False,
|
||||
drop=0.):
|
||||
"""
|
||||
初始化PoolMlp模块。
|
||||
|
||||
参数:
|
||||
in_features (int): 输入特征的数量。
|
||||
hidden_features (int, 可选): 隐藏层特征的数量。默认为None,设置为与in_features相同。
|
||||
out_features (int, 可选): 输出特征的数量。默认为None,设置为与in_features相同。
|
||||
act_layer (nn.Module, 可选): 使用的激活层。默认为nn.GELU。
|
||||
bias (bool, 可选): 是否在卷积层中包含偏置项。默认为False。
|
||||
drop (float, 可选): Dropout比率。默认为0。
|
||||
"""
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
@ -81,15 +64,6 @@ class PoolMlp(nn.Module):
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
通过PoolMlp模块的前向传播。
|
||||
|
||||
参数:
|
||||
x (torch.Tensor): 形状为[B, C, H, W]的输入张量。
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为[B, C, H, W]的输出张量。
|
||||
"""
|
||||
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
@ -97,55 +71,6 @@ class PoolMlp(nn.Module):
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
# class BaseFeatureExtraction1(nn.Module):
|
||||
# def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
# act_layer=nn.GELU,
|
||||
# # norm_layer=nn.LayerNorm,
|
||||
# drop=0., drop_path=0.,
|
||||
# use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
#
|
||||
# super().__init__()
|
||||
#
|
||||
# self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
# self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
# self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
# mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
# self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
# act_layer=act_layer, drop=drop)
|
||||
#
|
||||
# # The following two techniques are useful to train deep PoolFormers.
|
||||
# self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
||||
# else nn.Identity()
|
||||
# self.use_layer_scale = use_layer_scale
|
||||
#
|
||||
# if use_layer_scale:
|
||||
# self.layer_scale_1 = nn.Parameter(
|
||||
# torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
#
|
||||
# self.layer_scale_2 = nn.Parameter(
|
||||
# torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
#
|
||||
# def forward(self, x): # 1 64 128 128
|
||||
# if self.use_layer_scale:
|
||||
# # self.layer_scale_1(64,)
|
||||
# tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
# normal = self.norm1(x) # 1 64 128 128
|
||||
# token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
# x = (x +
|
||||
# self.drop_path(
|
||||
# tmp1 * token_mix
|
||||
# )
|
||||
# # 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
# )
|
||||
# x = x + self.drop_path(
|
||||
# self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
# * self.poolmlp(self.norm2(x)))
|
||||
# else:
|
||||
# x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
# x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
# return x
|
||||
|
||||
class BaseFeatureExtraction(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
@ -155,7 +80,6 @@ class BaseFeatureExtraction(nn.Module):
|
||||
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
@ -175,81 +99,19 @@ class BaseFeatureExtraction(nn.Module):
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
def forward(self, x):
|
||||
if self.use_layer_scale:
|
||||
# self.layer_scale_1(64,)
|
||||
tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
normal = self.norm1(x) # 1 64 128 128
|
||||
token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
|
||||
|
||||
|
||||
x = (x +
|
||||
self.drop_path(
|
||||
tmp1 * token_mix
|
||||
)
|
||||
# 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
class BaseFeatureFusion(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
# norm_layer=nn.LayerNorm,
|
||||
drop=0., drop_path=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
# self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer, drop=drop)
|
||||
|
||||
# The following two techniques are useful to train deep PoolFormers.
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
||||
else nn.Identity()
|
||||
self.use_layer_scale = use_layer_scale
|
||||
|
||||
if use_layer_scale:
|
||||
self.layer_scale_1 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
if self.use_layer_scale:
|
||||
# self.layer_scale_1(64,)
|
||||
tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
normal = self.norm1(x) # 1 64 128 128
|
||||
token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
|
||||
|
||||
|
||||
x = (x +
|
||||
self.drop_path(
|
||||
tmp1 * token_mix
|
||||
)
|
||||
# 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
class InvertedResidualBlock(nn.Module):
|
||||
def __init__(self, inp, oup, expand_ratio):
|
||||
@ -269,41 +131,15 @@ class InvertedResidualBlock(nn.Module):
|
||||
nn.Conv2d(hidden_dim, oup, 1, bias=False),
|
||||
# nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.bottleneckBlock(x)
|
||||
|
||||
|
||||
class DepthwiseSeparableConvBlock(nn.Module):
|
||||
def __init__(self, inp, oup, kernel_size=3, stride=1, padding=1):
|
||||
super(DepthwiseSeparableConvBlock, self).__init__()
|
||||
self.depthwise = nn.Conv2d(inp, inp, kernel_size, stride, padding, groups=inp, bias=False)
|
||||
self.pointwise = nn.Conv2d(inp, oup, 1, bias=False)
|
||||
self.bn = nn.BatchNorm2d(oup)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.depthwise(x)
|
||||
x = self.pointwise(x)
|
||||
x = self.bn(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
class DetailNode(nn.Module):
|
||||
|
||||
# <img src = "http://42.192.130.83:9000/picgo/imgs/小绿鲸英文文献阅读器_ELTITYqm5G.png" / > '
|
||||
def __init__(self,useBlock=0):
|
||||
def __init__(self):
|
||||
super(DetailNode, self).__init__()
|
||||
|
||||
if useBlock == 0:
|
||||
self.theta_phi = DepthwiseSeparableConvBlock(inp=32, oup=32)
|
||||
self.theta_rho = DepthwiseSeparableConvBlock(inp=32, oup=32)
|
||||
self.theta_eta = DepthwiseSeparableConvBlock(inp=32, oup=32)
|
||||
elif useBlock == 1:
|
||||
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
else:
|
||||
self.theta_phi = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_rho = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
self.theta_eta = InvertedResidualBlock(inp=32, oup=32, expand_ratio=2)
|
||||
@ -325,43 +161,16 @@ class DetailNode(nn.Module):
|
||||
class DetailFeatureExtraction(nn.Module):
|
||||
def __init__(self, num_layers=3):
|
||||
super(DetailFeatureExtraction, self).__init__()
|
||||
INNmodules = [DetailNode(use) for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
# self.enhancement_module = WTConv2d(32, 32)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128
|
||||
# # 增强并添加残差连接
|
||||
# enhanced_z1 = self.enhancement_module(z1)
|
||||
# enhanced_z2 = self.enhancement_module(z2)
|
||||
# # 残差连接
|
||||
# z1 = z1 + enhanced_z1
|
||||
# z2 = z2 + enhanced_z2
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
class DetailFeatureFusion(nn.Module):
|
||||
def __init__(self, num_layers=3):
|
||||
super(DetailFeatureFusion, self).__init__()
|
||||
INNmodules = [DetailNode() for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
# self.enhancement_module = WTConv2d(32, 32)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128
|
||||
# # 增强并添加残差连接
|
||||
# enhanced_z1 = self.enhancement_module(z1)
|
||||
# enhanced_z2 = self.enhancement_module(z2)
|
||||
# # 残差连接
|
||||
# z1 = z1 + enhanced_z1
|
||||
# z2 = z2 + enhanced_z2
|
||||
def forward(self, x):
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
# =============================================================================
|
||||
@ -524,80 +333,6 @@ class OverlapPatchEmbed(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
class BaseFeatureExtractionSAR(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
# norm_layer=nn.LayerNorm,
|
||||
drop=0., drop_path=0.,
|
||||
use_layer_scale=True, layer_scale_init_value=1e-5):
|
||||
|
||||
super().__init__()
|
||||
|
||||
self.WTConv2d = WTConv2d(dim, dim)
|
||||
self.norm1 = LayerNorm(dim, 'WithBias')
|
||||
self.token_mixer = SCSA(dim=dim, head_num=8)
|
||||
# self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代
|
||||
self.norm2 = LayerNorm(dim, 'WithBias')
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer, drop=drop)
|
||||
|
||||
# The following two techniques are useful to train deep PoolFormers.
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. \
|
||||
else nn.Identity()
|
||||
self.use_layer_scale = use_layer_scale
|
||||
|
||||
if use_layer_scale:
|
||||
self.layer_scale_1 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
self.layer_scale_2 = nn.Parameter(
|
||||
torch.ones(dim, dtype=torch.float32) * layer_scale_init_value)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
if self.use_layer_scale:
|
||||
# self.layer_scale_1(64,)
|
||||
tmp1 = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) # 64 1 1
|
||||
normal = self.norm1(x) # 1 64 128 128
|
||||
token_mix = self.token_mixer(normal) # 1 64 128 128
|
||||
|
||||
x = (x +
|
||||
self.drop_path(
|
||||
tmp1 * token_mix
|
||||
)
|
||||
# 该表达式将 self.layer_scale_1 这个一维张量(或变量)在维度末尾添加两个新的维度,使其从一维变为三维。这通常用于使其能够与三维的特征图进行广播操作,如元素相乘。具体用途可能包括调整卷积层或注意力机制中的权重。
|
||||
)
|
||||
x = x + self.drop_path(
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
|
||||
class DetailFeatureExtractionSAR(nn.Module):
|
||||
def __init__(self, num_layers=3):
|
||||
super(DetailFeatureExtractionSAR, self).__init__()
|
||||
INNmodules = [DetailNode(useBlock=1) for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
# self.enhancement_module = WTConv2d(32, 32)
|
||||
|
||||
def forward(self, x): # 1 64 128 128
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128
|
||||
# # 增强并添加残差连接
|
||||
# enhanced_z1 = self.enhancement_module(z1)
|
||||
# enhanced_z2 = self.enhancement_module(z2)
|
||||
# # 残差连接
|
||||
# z1 = z1 + enhanced_z1
|
||||
# z2 = z2 + enhanced_z2
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
|
||||
|
||||
class Restormer_Encoder(nn.Module):
|
||||
def __init__(self,
|
||||
inp_channels=1,
|
||||
@ -611,30 +346,21 @@ class Restormer_Encoder(nn.Module):
|
||||
):
|
||||
super(Restormer_Encoder, self).__init__()
|
||||
|
||||
# 区分
|
||||
|
||||
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
|
||||
|
||||
self.encoder_level1 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
|
||||
self.baseFeature = BaseFeatureExtraction(dim=dim)
|
||||
|
||||
self.detailFeature = DetailFeatureExtraction()
|
||||
|
||||
self.baseFeature_sar = BaseFeatureExtractionSAR(dim=dim)
|
||||
self.detailFeature_sar = DetailFeatureExtractionSAR()
|
||||
|
||||
def forward(self, inp_img,is_sar = False):
|
||||
def forward(self, inp_img):
|
||||
inp_enc_level1 = self.patch_embed(inp_img)
|
||||
out_enc_level1 = self.encoder_level1(inp_enc_level1)
|
||||
if is_sar:
|
||||
base_feature = self.baseFeature_sar(out_enc_level1) # 1 64 128 128
|
||||
detail_feature = self.detailFeature_sar(out_enc_level1) # 1 64 128 128
|
||||
return base_feature, detail_feature, out_enc_level1 # 1 64 128 128
|
||||
|
||||
else:
|
||||
base_feature = self.baseFeature(out_enc_level1) # 1 64 128 128
|
||||
detail_feature = self.detailFeature(out_enc_level1) # 1 64 128 128
|
||||
return base_feature, detail_feature, out_enc_level1 # 1 64 128 128
|
||||
base_feature = self.baseFeature(out_enc_level1)
|
||||
detail_feature = self.detailFeature(out_enc_level1)
|
||||
return base_feature, detail_feature, out_enc_level1
|
||||
|
||||
|
||||
class Restormer_Decoder(nn.Module):
|
||||
@ -651,7 +377,8 @@ class Restormer_Decoder(nn.Module):
|
||||
|
||||
super(Restormer_Decoder, self).__init__()
|
||||
self.reduce_channel = nn.Conv2d(int(dim * 2), int(dim), kernel_size=1, bias=bias)
|
||||
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
self.encoder_level2 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])])
|
||||
self.output = nn.Sequential(
|
||||
nn.Conv2d(int(dim), int(dim) // 2, kernel_size=3,
|
||||
@ -678,5 +405,3 @@ if __name__ == '__main__':
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
print(modelE)
|
||||
print(modelD)
|
||||
|
13
train.py
13
train.py
@ -6,8 +6,7 @@ Import packages
|
||||
------------------------------------------------------------------------------
|
||||
'''
|
||||
|
||||
from net import Restormer_Encoder, Restormer_Decoder, BaseFeatureExtraction, DetailFeatureExtraction, BaseFeatureFusion, \
|
||||
DetailFeatureFusioin
|
||||
from net import Restormer_Encoder, Restormer_Decoder, BaseFeatureExtraction, DetailFeatureExtraction
|
||||
from utils.dataset import H5Dataset
|
||||
import os
|
||||
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
||||
@ -86,8 +85,8 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
DIDF_Encoder = nn.DataParallel(Restormer_Encoder()).to(device)
|
||||
DIDF_Decoder = nn.DataParallel(Restormer_Decoder()).to(device)
|
||||
# BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64, num_heads=8)).to(device)
|
||||
BaseFuseLayer = nn.DataParallel(BaseFeatureFusion(dim=64)).to(device)
|
||||
DetailFuseLayer = nn.DataParallel(DetailFeatureFusion(num_layers=1)).to(device)
|
||||
BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64)).to(device)
|
||||
DetailFuseLayer = nn.DataParallel(DetailFeatureExtraction(num_layers=1)).to(device)
|
||||
|
||||
# optimizer, scheduler and loss function
|
||||
optimizer1 = torch.optim.Adam(
|
||||
@ -150,7 +149,7 @@ for epoch in range(num_epochs):
|
||||
|
||||
if epoch < epoch_gap: #Phase I
|
||||
feature_V_B, feature_V_D, _ = DIDF_Encoder(data_VIS)
|
||||
feature_I_B, feature_I_D, _ = DIDF_Encoder(data_IR,is_sar = True)
|
||||
feature_I_B, feature_I_D, _ = DIDF_Encoder(data_IR)
|
||||
data_VIS_hat, _ = DIDF_Decoder(data_VIS, feature_V_B, feature_V_D)
|
||||
data_IR_hat, _ = DIDF_Decoder(data_IR, feature_I_B, feature_I_D)
|
||||
|
||||
@ -187,7 +186,7 @@ for epoch in range(num_epochs):
|
||||
optimizer2.step()
|
||||
else: #Phase II
|
||||
feature_V_B, feature_V_D, feature_V = DIDF_Encoder(data_VIS)
|
||||
feature_I_B, feature_I_D, feature_I = DIDF_Encoder(data_IR,is_sar = True)
|
||||
feature_I_B, feature_I_D, feature_I = DIDF_Encoder(data_IR)
|
||||
feature_F_B = BaseFuseLayer(feature_I_B+feature_V_B)
|
||||
feature_F_D = DetailFuseLayer(feature_I_D+feature_V_D)
|
||||
data_Fuse, feature_F = DIDF_Decoder(data_VIS, feature_F_B, feature_F_D)
|
||||
@ -223,7 +222,6 @@ for epoch in range(num_epochs):
|
||||
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
|
||||
epoch_time = time.time() - prev_time
|
||||
prev_time = time.time()
|
||||
|
||||
sys.stdout.write(
|
||||
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] ETA: %.10s"
|
||||
% (
|
||||
@ -236,7 +234,6 @@ for epoch in range(num_epochs):
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# adjust the learning rate
|
||||
|
||||
scheduler1.step()
|
||||
|
Loading…
Reference in New Issue
Block a user