diff --git a/net.py b/net.py index 4841dad..1791517 100644 --- a/net.py +++ b/net.py @@ -327,7 +327,7 @@ class DetailFeatureExtraction(nn.Module): super(DetailFeatureExtraction, self).__init__() INNmodules = [DetailNode(use) for _ in range(num_layers)] self.net = nn.Sequential(*INNmodules) - self.enhancement_module = WTConv2d(32, 32) + # self.enhancement_module = WTConv2d(32, 32) def forward(self, x): # 1 64 128 128 z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128 @@ -346,7 +346,7 @@ class DetailFeatureFusion(nn.Module): super(DetailFeatureFusion, self).__init__() INNmodules = [DetailNode() for _ in range(num_layers)] self.net = nn.Sequential(*INNmodules) - self.enhancement_module = WTConv2d(32, 32) + # self.enhancement_module = WTConv2d(32, 32) def forward(self, x): # 1 64 128 128 z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128 @@ -582,7 +582,7 @@ class DetailFeatureExtractionSAR(nn.Module): super(DetailFeatureExtractionSAR, self).__init__() INNmodules = [DetailNode(useBlock=1) for _ in range(num_layers)] self.net = nn.Sequential(*INNmodules) - self.enhancement_module = WTConv2d(32, 32) + # self.enhancement_module = WTConv2d(32, 32) def forward(self, x): # 1 64 128 128 z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] # 1 32 128 128