修改代码实现,提高代码可读性和可维护性

This commit is contained in:
whaifree 2024-10-05 20:49:35 +08:00
parent 5e3fc11c37
commit c9e054e236
4 changed files with 38 additions and 14 deletions

33
net.py
View File

@ -31,7 +31,7 @@ class DropPath(nn.Module):
def forward(self, x): def forward(self, x):
return drop_path(x, self.drop_prob, self.training) return drop_path(x, self.drop_prob, self.training)
# 改点使用Pooling替换AttentionBase
class Pooling(nn.Module): class Pooling(nn.Module):
def __init__(self, kernel_size=3): def __init__(self, kernel_size=3):
super().__init__() super().__init__()
@ -44,8 +44,8 @@ class Pooling(nn.Module):
class PoolMlp(nn.Module): class PoolMlp(nn.Module):
""" """
Implementation of MLP with 1*1 convolutions. 实现基于1x1卷积的MLP模块
Input: tensor with shape [B, C, H, W] 输入形状为[B, C, H, W]的张量
""" """
def __init__(self, def __init__(self,
@ -55,6 +55,17 @@ class PoolMlp(nn.Module):
act_layer=nn.GELU, act_layer=nn.GELU,
bias=False, bias=False,
drop=0.): drop=0.):
"""
初始化PoolMlp模块
参数:
in_features (int): 输入特征的数量
hidden_features (int, 可选): 隐藏层特征的数量默认为None设置为与in_features相同
out_features (int, 可选): 输出特征的数量默认为None设置为与in_features相同
act_layer (nn.Module, 可选): 使用的激活层默认为nn.GELU
bias (bool, 可选): 是否在卷积层中包含偏置项默认为False
drop (float, 可选): Dropout比率默认为0
"""
super().__init__() super().__init__()
out_features = out_features or in_features out_features = out_features or in_features
hidden_features = hidden_features or in_features hidden_features = hidden_features or in_features
@ -64,6 +75,15 @@ class PoolMlp(nn.Module):
self.drop = nn.Dropout(drop) self.drop = nn.Dropout(drop)
def forward(self, x): def forward(self, x):
"""
通过PoolMlp模块的前向传播
参数:
x (torch.Tensor): 形状为[B, C, H, W]的输入张量
返回:
torch.Tensor: 形状为[B, C, H, W]的输出张量
"""
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W) x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
x = self.act(x) x = self.act(x)
x = self.drop(x) x = self.drop(x)
@ -71,6 +91,7 @@ class PoolMlp(nn.Module):
x = self.drop(x) x = self.drop(x)
return x return x
class BaseFeatureExtraction(nn.Module): class BaseFeatureExtraction(nn.Module):
def __init__(self, dim, pool_size=3, mlp_ratio=4., def __init__(self, dim, pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU, act_layer=nn.GELU,
@ -108,7 +129,7 @@ class BaseFeatureExtraction(nn.Module):
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
* self.poolmlp(self.norm2(x))) * self.poolmlp(self.norm2(x)))
else: else:
x = x + self.drop_path(self.token_mixer(self.norm1(x))) x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
x = x + self.drop_path(self.poolmlp(self.norm2(x))) x = x + self.drop_path(self.poolmlp(self.norm2(x)))
return x return x
@ -131,11 +152,9 @@ class InvertedResidualBlock(nn.Module):
nn.Conv2d(hidden_dim, oup, 1, bias=False), nn.Conv2d(hidden_dim, oup, 1, bias=False),
# nn.BatchNorm2d(oup), # nn.BatchNorm2d(oup),
) )
def forward(self, x): def forward(self, x):
return self.bottleneckBlock(x) return self.bottleneckBlock(x)
class DetailNode(nn.Module): class DetailNode(nn.Module):
def __init__(self): def __init__(self):
super(DetailNode, self).__init__() super(DetailNode, self).__init__()
@ -163,14 +182,12 @@ class DetailFeatureExtraction(nn.Module):
super(DetailFeatureExtraction, self).__init__() super(DetailFeatureExtraction, self).__init__()
INNmodules = [DetailNode() for _ in range(num_layers)] INNmodules = [DetailNode() for _ in range(num_layers)]
self.net = nn.Sequential(*INNmodules) self.net = nn.Sequential(*INNmodules)
def forward(self, x): def forward(self, x):
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
for layer in self.net: for layer in self.net:
z1, z2 = layer(z1, z2) z1, z2 = layer(z1, z2)
return torch.cat((z1, z2), dim=1) return torch.cat((z1, z2), dim=1)
# ============================================================================= # =============================================================================
# ============================================================================= # =============================================================================

5
requirement.txt Normal file
View File

@ -0,0 +1,5 @@
scipy==1.9.3
scikit-image==0.19.2
scikit-learn==1.1.3
tqdm==4.62.0

View File

@ -13,13 +13,13 @@ logging.basicConfig(level=logging.CRITICAL)
os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["CUDA_VISIBLE_DEVICES"] = "0"
ckpt_path= r"models/PFCFuse.pth" ckpt_path= r"/home/star/whaiDir/PFCFuse/models/PFCFusion10-05-18-13.pth"
for dataset_name in ["MSRS","TNO","RoadScene"]: for dataset_name in ["TNO"]:
print("\n"*2+"="*80) print("\n"*2+"="*80)
model_name="PFCFuse " model_name="PFCFuse "
print("The test result of "+dataset_name+' :') print("The test result of "+dataset_name+' :')
test_folder=os.path.join('test_img',dataset_name) test_folder=os.path.join('/home/star/whaiDir/CDDFuse/test_img/',dataset_name)
test_out_folder=os.path.join('test_result',dataset_name) test_out_folder=os.path.join('test_result',dataset_name)
device = 'cuda' if torch.cuda.is_available() else 'cpu' device = 'cuda' if torch.cuda.is_available() else 'cpu'
@ -39,6 +39,7 @@ for dataset_name in ["MSRS","TNO","RoadScene"]:
with torch.no_grad(): with torch.no_grad():
for img_name in os.listdir(os.path.join(test_folder,"ir")): for img_name in os.listdir(os.path.join(test_folder,"ir")):
print(img_name)
data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0 data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0
data_VIS = cv2.split(image_read_cv2(os.path.join(test_folder, "vi", img_name), mode='YCrCb'))[0][np.newaxis, np.newaxis, ...] / 255.0 data_VIS = cv2.split(image_read_cv2(os.path.join(test_folder, "vi", img_name), mode='YCrCb'))[0][np.newaxis, np.newaxis, ...] / 255.0
@ -60,7 +61,7 @@ for dataset_name in ["MSRS","TNO","RoadScene"]:
rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB) rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB)
img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder) img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder)
eval_folder=test_out_folder eval_folder=test_out_folder
ori_img_folder=test_folder ori_img_folder=test_folder
metric_result = np.zeros((8)) metric_result = np.zeros((8))

View File

@ -87,7 +87,7 @@ Loss_ssim = kornia.losses.SSIM(11, reduction='mean')
HuberLoss = nn.HuberLoss() HuberLoss = nn.HuberLoss()
# data loader # data loader
trainloader = DataLoader(H5Dataset(r"data/MSRS_train_imgsize_128_stride_200.h5"), trainloader = DataLoader(H5Dataset(r"/home/star/whaiDir/CDDFuse/data/MSRS_train_imgsize_128_stride_200.h5"),
batch_size=batch_size, batch_size=batch_size,
shuffle=True, shuffle=True,
num_workers=0) num_workers=0)
@ -201,13 +201,14 @@ for epoch in range(num_epochs):
epoch_time = time.time() - prev_time epoch_time = time.time() - prev_time
prev_time = time.time() prev_time = time.time()
sys.stdout.write( sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f]" "\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] ETA: %.10s"
% ( % (
epoch, epoch,
num_epochs, num_epochs,
i, i,
len(loader['train']), len(loader['train']),
loss.item(), loss.item(),
time_left,
) )
) )