diff --git a/net.py b/net.py index e404ed0..fa384a3 100644 --- a/net.py +++ b/net.py @@ -112,6 +112,48 @@ class BaseFeatureExtraction(nn.Module): x = x + self.drop_path(self.poolmlp(self.norm2(x))) return x +class BaseFeatureExtractionSAR(nn.Module): + def __init__(self, dim, pool_size=3, mlp_ratio=4., + act_layer=nn.GELU, + # norm_layer=nn.LayerNorm, + drop=0., drop_path=0., + use_layer_scale=True, layer_scale_init_value=1e-5): + + super().__init__() + + self.norm1 = LayerNorm(dim, 'WithBias') + self.token_mixer = Pooling(kernel_size=pool_size) # vits是msa,MLPs是mlp,这个用pool来替代 + self.norm2 = LayerNorm(dim, 'WithBias') + mlp_hidden_dim = int(dim * mlp_ratio) + self.poolmlp = PoolMlp(in_features=dim, hidden_features=mlp_hidden_dim, + act_layer=act_layer, drop=drop) + + # The following two techniques are useful to train deep PoolFormers. + self.drop_path = DropPath(drop_path) if drop_path > 0. \ + else nn.Identity() + self.use_layer_scale = use_layer_scale + + if use_layer_scale: + self.layer_scale_1 = nn.Parameter( + torch.ones(dim, dtype=torch.float32) * layer_scale_init_value) + + self.layer_scale_2 = nn.Parameter( + torch.ones(dim, dtype=torch.float32) * layer_scale_init_value) + + def forward(self, x): + if self.use_layer_scale: + x = x + self.drop_path( + self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) + * self.token_mixer(self.norm1(x))) + x = x + self.drop_path( + self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) + * self.poolmlp(self.norm2(x))) + else: + x = x + self.drop_path(self.token_mixer(self.norm1(x))) + x = x + self.drop_path(self.poolmlp(self.norm2(x))) + return x + + class InvertedResidualBlock(nn.Module): def __init__(self, inp, oup, expand_ratio): @@ -171,6 +213,19 @@ class DetailFeatureExtraction(nn.Module): return torch.cat((z1, z2), dim=1) +class DetailFeatureExtractionSAR(nn.Module): + def __init__(self, num_layers=3): + super(DetailFeatureExtractionSAR, self).__init__() + INNmodules = [DetailNode() for _ in range(num_layers)] + self.net = nn.Sequential(*INNmodules) + + def forward(self, x): + z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]] + for layer in self.net: + z1, z2 = layer(z1, z2) + return torch.cat((z1, z2), dim=1) + + # ============================================================================= # ============================================================================= @@ -352,14 +407,23 @@ class Restormer_Encoder(nn.Module): *[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) self.baseFeature = BaseFeatureExtraction(dim=dim) - self.detailFeature = DetailFeatureExtraction() - def forward(self, inp_img): + self.baseFeatureSar= BaseFeatureExtractionSAR(dim=dim) + self.detailFeatureSar = DetailFeatureExtractionSAR() + + + + def forward(self, inp_img, sar_img=False): inp_enc_level1 = self.patch_embed(inp_img) out_enc_level1 = self.encoder_level1(inp_enc_level1) - base_feature = self.baseFeature(out_enc_level1) - detail_feature = self.detailFeature(out_enc_level1) + + if sar_img: + base_feature = self.baseFeature(out_enc_level1) + detail_feature = self.detailFeature(out_enc_level1) + else: + base_feature= self.baseFeature(out_enc_level1) + detail_feature = self.detailFeature(out_enc_level1) return base_feature, detail_feature, out_enc_level1 diff --git a/test_IVF.py b/test_IVF.py index 04e10ce..148ed1f 100644 --- a/test_IVF.py +++ b/test_IVF.py @@ -17,11 +17,11 @@ current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") os.environ["CUDA_VISIBLE_DEVICES"] = "0" -ckpt_path= r"/home/star/whaiDir/PFCFuse/models/whaiFusion11-15-17-48.pth" +ckpt_path= r"/home/star/whaiDir/PFCFuse/models/whaiFusion11-15-22-09.pth" for dataset_name in ["sar"]: print("\n"*2+"="*80) - model_name="PFCFuse 最基本版本 " + model_name="PFCFuse Enhance " print("The test result of "+dataset_name+' :') test_folder = os.path.join('test_img', dataset_name) test_out_folder=os.path.join('test_result',current_time,dataset_name) diff --git a/train.py b/train.py index 5bf94a8..9f2a1de 100644 --- a/train.py +++ b/train.py @@ -149,7 +149,7 @@ for epoch in range(num_epochs): if epoch < epoch_gap: #Phase I feature_V_B, feature_V_D, _ = DIDF_Encoder(data_VIS) - feature_I_B, feature_I_D, _ = DIDF_Encoder(data_IR) + feature_I_B, feature_I_D, _ = DIDF_Encoder(data_IR,sar_img=True) data_VIS_hat, _ = DIDF_Decoder(data_VIS, feature_V_B, feature_V_D) data_IR_hat, _ = DIDF_Decoder(data_IR, feature_I_B, feature_I_D)