Update net.py
This commit is contained in:
parent
282d38e52a
commit
f0765f0835
20
net.py
20
net.py
@ -1,4 +1,3 @@
|
||||
# poolformer
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
@ -9,14 +8,6 @@ from einops import rearrange
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
@ -41,7 +32,6 @@ class DropPath(nn.Module):
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
class Pooling(nn.Module):
|
||||
def __init__(self, kernel_size=3):
|
||||
super().__init__()
|
||||
@ -72,13 +62,6 @@ class PoolMlp(nn.Module):
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=bias)
|
||||
self.drop = nn.Dropout(drop)
|
||||
# self.apply(self._init_weights)
|
||||
|
||||
# def _init_weights(self, m):
|
||||
# if isinstance(m, nn.Conv2D):
|
||||
# trunc_normal_(m.weight)
|
||||
# if m.bias is not None:
|
||||
# zeros_(m.bias)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
@ -88,7 +71,6 @@ class PoolMlp(nn.Module):
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class BaseFeatureExtraction(nn.Module):
|
||||
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
|
||||
act_layer=nn.GELU,
|
||||
@ -369,7 +351,6 @@ class Restormer_Encoder(nn.Module):
|
||||
self.encoder_level1 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
|
||||
|
||||
self.baseFeature = BaseFeatureExtraction(dim=dim)
|
||||
|
||||
self.detailFeature = DetailFeatureExtraction()
|
||||
@ -424,4 +405,3 @@ if __name__ == '__main__':
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user