Compare commits
10 Commits
1ad1204210
...
c9e054e236
Author | SHA1 | Date | |
---|---|---|---|
c9e054e236 | |||
|
5e3fc11c37 | ||
|
f0765f0835 | ||
|
282d38e52a | ||
|
8f50f55503 | ||
|
6265086a58 | ||
|
d65393b3c4 | ||
|
656c8ba0a1 | ||
|
b02b41f794 | ||
|
8b1957743f |
BIN
PFCFuse_IVF.pth
Normal file
BIN
PFCFuse_IVF.pth
Normal file
Binary file not shown.
12
README.md
12
README.md
@ -1,5 +1,4 @@
|
||||
# PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion
|
||||
Poolformer-cnn图像融合框架
|
||||
The implementation of our paper "PFCFuse: A Poolformer and CNN fusion network for Infrared-Visible Image Fusion".
|
||||
## Recommended Environment:
|
||||
python=3.8\
|
||||
@ -26,3 +25,14 @@ Run
|
||||
```
|
||||
python test_IVF.py
|
||||
```
|
||||
|
||||
## 相关工作
|
||||
```
|
||||
@inproceedings{zhao2023cddfuse,
|
||||
title={Cddfuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion},
|
||||
author={Zhao, Zixiang and Bai, Haowen and Zhang, Jiangshe and Zhang, Yulun and Xu, Shuang and Lin, Zudi and Timofte, Radu and Van Gool, Luc},
|
||||
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
|
||||
pages={5906--5916},
|
||||
year={2023}
|
||||
}
|
||||
```
|
||||
|
BIN
image/Poolformer.png
Normal file
BIN
image/Poolformer.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 102 KiB |
BIN
image/en_decoder.png
Normal file
BIN
image/en_decoder.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 105 KiB |
BIN
image/encoder_decoder.png
Normal file
BIN
image/encoder_decoder.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 350 KiB |
BIN
image/qualitative.png
Normal file
BIN
image/qualitative.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 17 MiB |
BIN
image/stage.png
Normal file
BIN
image/stage.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 271 KiB |
51
net.py
51
net.py
@ -1,4 +1,3 @@
|
||||
# poolformer
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
@ -9,14 +8,6 @@ from einops import rearrange
|
||||
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
||||
"""
|
||||
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
@ -40,8 +31,7 @@ class DropPath(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
# 改点,使用Pooling替换AttentionBase
|
||||
class Pooling(nn.Module):
|
||||
def __init__(self, kernel_size=3):
|
||||
super().__init__()
|
||||
@ -54,8 +44,8 @@ class Pooling(nn.Module):
|
||||
|
||||
class PoolMlp(nn.Module):
|
||||
"""
|
||||
Implementation of MLP with 1*1 convolutions.
|
||||
Input: tensor with shape [B, C, H, W]
|
||||
实现基于1x1卷积的MLP模块。
|
||||
输入:形状为[B, C, H, W]的张量。
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -65,6 +55,17 @@ class PoolMlp(nn.Module):
|
||||
act_layer=nn.GELU,
|
||||
bias=False,
|
||||
drop=0.):
|
||||
"""
|
||||
初始化PoolMlp模块。
|
||||
|
||||
参数:
|
||||
in_features (int): 输入特征的数量。
|
||||
hidden_features (int, 可选): 隐藏层特征的数量。默认为None,设置为与in_features相同。
|
||||
out_features (int, 可选): 输出特征的数量。默认为None,设置为与in_features相同。
|
||||
act_layer (nn.Module, 可选): 使用的激活层。默认为nn.GELU。
|
||||
bias (bool, 可选): 是否在卷积层中包含偏置项。默认为False。
|
||||
drop (float, 可选): Dropout比率。默认为0。
|
||||
"""
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
@ -72,15 +73,17 @@ class PoolMlp(nn.Module):
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, bias=bias)
|
||||
self.drop = nn.Dropout(drop)
|
||||
# self.apply(self._init_weights)
|
||||
|
||||
# def _init_weights(self, m):
|
||||
# if isinstance(m, nn.Conv2D):
|
||||
# trunc_normal_(m.weight)
|
||||
# if m.bias is not None:
|
||||
# zeros_(m.bias)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
通过PoolMlp模块的前向传播。
|
||||
|
||||
参数:
|
||||
x (torch.Tensor): 形状为[B, C, H, W]的输入张量。
|
||||
|
||||
返回:
|
||||
torch.Tensor: 形状为[B, C, H, W]的输出张量。
|
||||
"""
|
||||
x = self.fc1(x) # (B, C, H, W) --> (B, C, H, W)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
@ -126,7 +129,7 @@ class BaseFeatureExtraction(nn.Module):
|
||||
self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
|
||||
* self.poolmlp(self.norm2(x)))
|
||||
else:
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x)))
|
||||
x = x + self.drop_path(self.token_mixer(self.norm1(x))) # 匹配cddfuse
|
||||
x = x + self.drop_path(self.poolmlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
@ -149,11 +152,9 @@ class InvertedResidualBlock(nn.Module):
|
||||
nn.Conv2d(hidden_dim, oup, 1, bias=False),
|
||||
# nn.BatchNorm2d(oup),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.bottleneckBlock(x)
|
||||
|
||||
|
||||
class DetailNode(nn.Module):
|
||||
def __init__(self):
|
||||
super(DetailNode, self).__init__()
|
||||
@ -181,14 +182,12 @@ class DetailFeatureExtraction(nn.Module):
|
||||
super(DetailFeatureExtraction, self).__init__()
|
||||
INNmodules = [DetailNode() for _ in range(num_layers)]
|
||||
self.net = nn.Sequential(*INNmodules)
|
||||
|
||||
def forward(self, x):
|
||||
z1, z2 = x[:, :x.shape[1] // 2], x[:, x.shape[1] // 2:x.shape[1]]
|
||||
for layer in self.net:
|
||||
z1, z2 = layer(z1, z2)
|
||||
return torch.cat((z1, z2), dim=1)
|
||||
|
||||
|
||||
# =============================================================================
|
||||
|
||||
# =============================================================================
|
||||
@ -369,7 +368,6 @@ class Restormer_Encoder(nn.Module):
|
||||
self.encoder_level1 = nn.Sequential(
|
||||
*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor,
|
||||
bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])])
|
||||
|
||||
self.baseFeature = BaseFeatureExtraction(dim=dim)
|
||||
|
||||
self.detailFeature = DetailFeatureExtraction()
|
||||
@ -424,4 +422,3 @@ if __name__ == '__main__':
|
||||
window_size = 8
|
||||
modelE = Restormer_Encoder().cuda()
|
||||
modelD = Restormer_Decoder().cuda()
|
||||
|
||||
|
5
requirement.txt
Normal file
5
requirement.txt
Normal file
@ -0,0 +1,5 @@
|
||||
|
||||
scipy==1.9.3
|
||||
scikit-image==0.19.2
|
||||
scikit-learn==1.1.3
|
||||
tqdm==4.62.0
|
15
test_IVF.py
15
test_IVF.py
@ -8,25 +8,23 @@ import torch.nn as nn
|
||||
from utils.img_read_save import img_save,image_read_cv2
|
||||
import warnings
|
||||
import logging
|
||||
# 增加
|
||||
warnings.filterwarnings("ignore")
|
||||
logging.basicConfig(level=logging.CRITICAL)
|
||||
|
||||
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
ckpt_path= r"models/PFCFuse.pth"
|
||||
ckpt_path= r"/home/star/whaiDir/PFCFuse/models/PFCFusion10-05-18-13.pth"
|
||||
|
||||
for dataset_name in ["MSRS","TNO","RoadScene"]:
|
||||
for dataset_name in ["TNO"]:
|
||||
print("\n"*2+"="*80)
|
||||
model_name="PFCFuse "
|
||||
print("The test result of "+dataset_name+' :')
|
||||
test_folder=os.path.join('test_img',dataset_name)
|
||||
test_folder=os.path.join('/home/star/whaiDir/CDDFuse/test_img/',dataset_name)
|
||||
test_out_folder=os.path.join('test_result',dataset_name)
|
||||
|
||||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
Encoder = nn.DataParallel(Restormer_Encoder()).to(device)
|
||||
Decoder = nn.DataParallel(Restormer_Decoder()).to(device)
|
||||
# BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64, num_heads=8)).to(device)
|
||||
BaseFuseLayer = nn.DataParallel(BaseFeatureExtraction(dim=64)).to(device)
|
||||
DetailFuseLayer = nn.DataParallel(DetailFeatureExtraction(num_layers=1)).to(device)
|
||||
|
||||
@ -41,14 +39,12 @@ for dataset_name in ["MSRS","TNO","RoadScene"]:
|
||||
|
||||
with torch.no_grad():
|
||||
for img_name in os.listdir(os.path.join(test_folder,"ir")):
|
||||
print(img_name)
|
||||
|
||||
data_IR=image_read_cv2(os.path.join(test_folder,"ir",img_name),mode='GRAY')[np.newaxis,np.newaxis, ...]/255.0
|
||||
# 改
|
||||
data_VIS = cv2.split(image_read_cv2(os.path.join(test_folder, "vi", img_name), mode='YCrCb'))[0][np.newaxis, np.newaxis, ...] / 255.0
|
||||
# ycrcb, uint8
|
||||
data_VIS_BGR = cv2.imread(os.path.join(test_folder, "vi", img_name))
|
||||
_, data_VIS_Cr, data_VIS_Cb = cv2.split(cv2.cvtColor(data_VIS_BGR, cv2.COLOR_BGR2YCrCb))
|
||||
# 改
|
||||
|
||||
data_IR,data_VIS = torch.FloatTensor(data_IR),torch.FloatTensor(data_VIS)
|
||||
data_VIS, data_IR = data_VIS.cuda(), data_IR.cuda()
|
||||
@ -60,13 +56,10 @@ for dataset_name in ["MSRS","TNO","RoadScene"]:
|
||||
data_Fuse, _ = Decoder(data_VIS, feature_F_B, feature_F_D)
|
||||
data_Fuse=(data_Fuse-torch.min(data_Fuse))/(torch.max(data_Fuse)-torch.min(data_Fuse))
|
||||
fi = np.squeeze((data_Fuse * 255).cpu().numpy())
|
||||
# 改
|
||||
# float32 to uint8
|
||||
fi = fi.astype(np.uint8)
|
||||
ycrcb_fi = np.dstack((fi, data_VIS_Cr, data_VIS_Cb))
|
||||
rgb_fi = cv2.cvtColor(ycrcb_fi, cv2.COLOR_YCrCb2RGB)
|
||||
img_save(rgb_fi, img_name.split(sep='.')[0], test_out_folder)
|
||||
# 改
|
||||
|
||||
eval_folder=test_out_folder
|
||||
ori_img_folder=test_folder
|
||||
|
5
train.py
5
train.py
@ -87,7 +87,7 @@ Loss_ssim = kornia.losses.SSIM(11, reduction='mean')
|
||||
HuberLoss = nn.HuberLoss()
|
||||
|
||||
# data loader
|
||||
trainloader = DataLoader(H5Dataset(r"data/MSRS_train_imgsize_128_stride_200.h5"),
|
||||
trainloader = DataLoader(H5Dataset(r"/home/star/whaiDir/CDDFuse/data/MSRS_train_imgsize_128_stride_200.h5"),
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=0)
|
||||
@ -201,13 +201,14 @@ for epoch in range(num_epochs):
|
||||
epoch_time = time.time() - prev_time
|
||||
prev_time = time.time()
|
||||
sys.stdout.write(
|
||||
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f]"
|
||||
"\r[Epoch %d/%d] [Batch %d/%d] [loss: %f] ETA: %.10s"
|
||||
% (
|
||||
epoch,
|
||||
num_epochs,
|
||||
i,
|
||||
len(loader['train']),
|
||||
loss.item(),
|
||||
time_left,
|
||||
)
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user